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What are Human Associations?

® Mental connections between concepts

® What's the first thing that comes to your
mind when thinking about ...?

® Example:

® Dog
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What are Human Associations?

® Mental connections between concepts

® What's the first thing that comes to your
mind when thinking about ...?

® Example:
® Dog: Cat, collar, leash, walk, fur, bark

® House: Roof, door, window, flat, live
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Associations vs. Similarity

® Partially overlapping, but +

® Strongly Associated but not Similar:
® Baby - Crying

® Similar but not Strongly Associated:

o Dog - Terrier (100 ppl top answers: Cat (57 %), Collar (5 %), bark (2 %))
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Motivation

® Associations are important for thinking:
® Navigate from one thought to another

® “Closeness of concepts in our mind”
Chris Welty’s First Lady “Nixon” example

® Can we teach machines to do the same?
® Using their Knowledge!?

® Linked Data
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My Research

® Research Question:

® |s it possible to learn patterns for Human
Associations from Linked Data!?
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My Research

® Research Question:

® |s it possible to learn patterns for Human
Associations from Linked Data!?
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My Research

® Research Question:

® |s it possible to learn patterns for Human
Associations from Linked Data!?

® Goal:

we would associate
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My Research

® Research Question:

® |s it possible to learn patterns for Human
Associations from Linked Data!?

® Dataset of "Semantic Associations' needed
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My Research

® Research Question:

® |s it possible to learn patterns for Human
Associations from Linked Data!?

® Dataset of "Semantic Associations' needed

R
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emantic Associations Dataset

* (Raw) Edinburgh Associative Thesaurus (EAT
as RDF (1.7 M triples)

® /27 verified distinct Semantic Associations

~ Legend
- Cross Domain

® O ® /D Associations x
Government

< C | © nttps://w3id.org/associations :

Life Sciences !
Linguistics
Media

DATASETS GRAPH PATTERN LEARNER PUBLICATIONS CONTACT
Publications

ASSOCIATIONS ABOUT  VOCABULARY
Social Networking

s ncoming Links
s Qutgoing Links

ASSOCIATIONS &
LINKED DATA

A research project to connect Human Associations and the Sémantic
Web

(drag'/ scroll to interact)

EXPLORE CONTINUE
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Semantic Associations Dataset

® /27 verified distinct Semantic Associations

Stimulus

Response

C
C
C
C
G

br:Cow
br:Camping
br:Expense
br:Bed
br:Pupil

O O O O O

O

Of

O

- Milk
Tent

:Money

or:Sleep

or:Eye

® Not readily modelled in DBpedia!

® Not one property!
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Machine Learning Outline
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Machine Learning Outline
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Evaluation

® How good are the predictions!
® Training/Test set split

® Given a stimulus from the test set, what'’s
the rank of the true response mthe
prediction results? i
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recall@k
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Evaluation Results

Rec@1 Rec@2

Method
DocSim
Word2Vec
RDF2Vec
MW

NB Bidi WL PR 13.9%
NB Bidi WL InDeg 15.3%
gpl + precisions 25.0%
gpl + neural net 30.6%

20.8%
20.8%

36.1%
36.1%

37

22.2%
26.4%

44.4%
48.6%

29.2%
31.9%

52.8%
51.4%

Rec@5 Rec@10

31.9%
33.3%

62.5%
62.5%

20.2%
21.4%

37.1%
40.3%

23.8%
24.8%

46.0%
48.3%
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Evaluation Results

Method Rec@1 Rec@2 Rec@5 Rec@10

DocSim
Word2Vec
RDF2Vec
MW

NB Bidi WL PR 13.9% 20.8% 22.2% 29.2% 31.9% 202% 23.8%
NB Bidi WL InDeg 15.3% 20.8% 26.4% 31.9% 33.3% 21.4% 24.8%

gpl + precisions - 36.1% 44.4% 52.8% 62.5% 37.1% 46.0%

gpl + neural net | | 36.1% 48.6% 51.4% 62.5% 40.3% 48.3%

® Avg. Inter-Human Agreement:|~ 32 %|
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Demo

ASSOCIATIONS PREDICTION DEMO FURTHER INFORMATION

HUMAN ASSOCIATION
PREDICTION DEMO

This page demonstrates how human associations can be simulated with Linked Data.

For this demo, we used the Graph Pattern Learner to train a machine learning model on a
training dataset of human associations (e.g., Dog - Cat).

Click continue to try the trained model out yourself by entering a source node and have it
predict target nodes that humans are likely to associate. As a fallback you can also watch a
short video of the demo (YouTube).

Training Data Graph Pattern
‘ Learner

Pattern Learner

Fusion Training
‘ SPARQL |
Endooint |
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Other Applications

® TasteDive (Recommendation Engine) Books

® ~50 % Recall@10
® DBpediaNYD
® ~63 % Recall@I0
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Summary

® (oal
Learning Graph Patterns for Associations .\ @
@~ @
® Semantic Association Dataset
i
® Graph Pattern Learner - a0
Learns SPARQL Patterns for o
Source-Target-Pairs |
Demo | =
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Future VWork

® Apply Evolutionary Algorithm
® to other datasets

® to other problems

® Extensions:
- I .
® |literals e
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Discussion

Thanks for your attention

Questions!?

ASSOCIATIONS &
LINKED DATA

https://w3id.org/associations
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